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experiments by raising the value of d, looking for saturation 
It is argued that the use of the box-counting algorithm to calculate of D,. 

the correlation dimension is a better choice than the Grassberger- The most frequently used dimensions are the capacity 
Procaccia (correlation integral) algorithm for dealing with an experi- dimension 
mental data set. This is illuminated by treating three classical examples: 
the logistic map, the Henon map and the Lorenz equation. The 
intensity data of a pulsar is also treated which is revealed to have a D=D,=lim !!!?@ (2) 
least embedding dimension of 14 and the correlation dimension of E+~ ln(l/s)’ 
about 4.5. y C!! 1992 Academic Press. Inc. 

the information dimension 

Chaotic systems are typically studied as follows. First, a 
time series is generated by measuring a chaotic quantity at 
times t = 0, z, 22, . . . . nr, . . . . Occasionally, nature provides the 
time series directly as in the case of pulsar data to be 
investigated later in this paper. 

Second, one chooses an embedding dimension d, and 
constructs vectors Xi , . . . . X,,, in this d-dimensional space 
from the time series data using a phase recovering technique 
1141. 

Finally, if the set of points Xi belongs to a strange 
attractor, one may find the generalized dimensions 

1 . 
D,=- 

1 - q !Y 

In Cyzj P:(c) 
ln(l/s) ’ 

qao, qz 1, (1) 

v = lim D 
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and the correlation dimension 

v = D = lim ln C2Y W4 
2 

8’0 lnc ’ (4) 

Grassberger and Procaccia have introduced the correla- 
tion integral [5-S] 

C(E) = lim CE=I,i#jH(‘- llxi-xjll) 

M2 7 (5) M+m 

where H( .) is the Heaviside function and M is the number 
of points considered. It can be shown that if the set is self- 

where N(E) is the number of non-empty boxes, Pi(s) is the 
similar then C(E) is proportional to Cr2j P;(s), so v can be 

probability of finding a point in a d-dimensional box with 
evaluated with the help of the correlation integral, 

length scale E, and the summation is carried out over all 
boxes. However, the limit value is in general not available (6) 
for the real system, so one plots the numerator of Eq. (1) 
versus the denominator for finite E. If a reasonably good 
straight line tits the discrete points in a certain range of E, Recently, most authors use this Grassberger-Procaccia 
the slope of this straight line determines D,. Since the algorithm to calculate the correlation dimension as the 
least embedding dimension is in general unknown, one main measure of a strange attractor, because it is argued 

that the box-counting algorithm cannot be used to calculate 
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calculation amount roughly proportional to M2, so many 
authors use a modified version; they choose a small number 
of reference points and only consider the distance from them 
to the remaining points. It is evident that this variant will 
bring additional errors in the results as pointed out in [9]. 
Theiler [lo] suggests an algorithm in which a presorting is 
performed, so that one does not need to consider those 
points which are far away from the reference points and 
therefore the computational work is somehow reduced. 
This algorithm brings additional complexities and is not of 
obvious advantage except the embedding dimension is very 
low. 

Let us consider the box-counting algorithm more closely. 
In order to occupy all non-empty boxes with small length 
scale E, one needs a huge number of points, or the calculated 
capacity dimension will be very inaccurate. Noting this 
point, a very early paper [ 1 l] already shows that box- 
counting algorithms are generally impractical for calcul- 
ating the capacity. However, if one uses box-counting 
algorithms to determine the correlation dimension, then the 
crucial thing is to calculate the value of the sum of the 
squared probability Cy2j P;(E), which is far less sensitive to 
the non-sufficient occupation with respect to the total 
number of non-empty boxes N(E). Therefore, there is a 
good reason to expect that one can use a box-counting 
algorithm to calculate correlation dimension effectively. 

Another point which is often mentioned in the literature 
as a shortcoming of the box-counting algorithm is the 

requirement of a huge memory for storing all possible boxes 
in a probably high-dimensional embedding space. But this 
difficulty can be easily overcome if one only considers 
occupied boxes, since then the number of storage places will 
not exceed the number of points in the data set, although a 
larger calculation amount will be required in return. 

An obvious advantage of using the box-counting algo- 
rithm to calculate the correlation dimension is that it only 
requires a calculation amount roughly proportional to 
MN(s), since we only need to check whether a new point is 
falling into an already occupied box or it creates a new 
occupied box itself. Typically, the value of N(E) is only 10 to 
20% of the value of M. Moreover, the computer mainly 
does comparison work, which is less time consuming than 
calculating distances in the Grassberger-Procaccia algo- 
rithm. Moreover, some tricks help one to raise the efficiency 
of the box-counting algorithm. For example, the data can be 
enlarged and rounded to an integer form, which keeps suf- 
ficient significant digitals and eases further manipulations. 
Furthermore, the coordinates of the occupied boxes can be 
stored in the ASCII code form rather than in the digital 
form. These measures reduce both the storage requirement 
and the computer time. Our experience shows that the box- 
counting algorithm enables one to calculate generalized 
dimensions of an experimental data set with a personal 
computer, or with a larger computer, one can do such a 
calculation on-line, which may be of a practical meaning. 

To test the accuracy of the box-counting algorithm 
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FIG. 1. Correlation dimension of the logistic map with I = 3.5699456 : (a) box-counting; (b) Grassberger-Procaccia algorithm. 
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FIG. 2. Correlation dimension of the Hinon map with a = 1.4, b = 0.3: (a) box-counting; (b) Grassberger-Procaccia algorithm. 
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FIG. 3. Correlation dimension of the Lorenz equation with R = 28,~ = 10, b = i: (a) box-counting; (b) Grassberger-Procaccia algorithm. 
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FIG. 4. Generalized dimensions of pulsar 0950 + 08 calculated with box-counting by using 4000 entries: (a) capacity; (b) information dimension; 
(c) correlation dimension. 
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TABLE I 

Fractal Dimensions Calculated with Box-Counting and the 
Grassberger-Procaccia Algorithm 

N0.d Time Emb. BOX- Grassbergerv Reference 
iter. increm. dim. counting Procaccia values [7] 

Logistic map 
1= 3.56699456 

H&non map 
a= 1.4 
b = 0.3 

Lorentz equation 
R=28 
r7= 10 
b = 813 

1000 1 D = 0.538 
u=O.518 
Y = 0.500 

2000 2 D = 1.286 
CT = 1.273 
Y= 1.229 

3 D= 1.244 
o= 1.261 
v= 1.221 

4OO+I 0.2 3 D = 1.778 
tJ = 2.028 
18 = 2.049 

4 D= 1.821 
o = 2.079 
I’= 2.106 

5 D = 1.802 
v = 2.072 
v=2.071 

D = 0.528 
0=0.517 

” = 0.501 Y = 0.500 

,I= 1.231 D = 1.272 

CJ= 1.258 
Y = 1.224 

Y= 1.231 

v = 2.069 

Y = 2.05 
v=2.120 

v=2.156 

applied to a small data set, we performed numerical tests on 
three classical examples, namely, the logistic map 

X n+l =kI(l -x,)9 (7) 

the H&non map 

~n+~=bxn, 

and the Lorenz equation 

i=a(y-x), 

j=-y-xz+Rx, 

i = xy - bz, 

(9) 

with discrete points at times with spacing 6t = 0.2. 
In order to simulate the real experimental situation, we 

deliberately choose a small data set and consider only one 
variable. The phase recovering technique is used. To our 
experience, the time lag does not influence the calculation 
results very much. We take a lag of one entry throughout 
the paper. The corresponding results are shown in Table I 
and Figs. 1-3, which show clearly that the box-counting 
algorithm gives the correlation dimension v more accurately 
than those with the Grassberger-Procaccia algorithm in all 
three examples, though it only needs about 20% computa- 
tion amount of that of the latter one as it is indicated in 
Table II. From these results we argue that box-counting as 

FIG. 5. Correlation dimension of pulsar 0950 + 08 calculated with 
Grassberger-Procaccia algorithm by using 4000 entries. 

applied to the correlation dimension of an experimental 
data set is in general less time-consuming and at least as 
accurate as the Grassberger-Procaccia algorithm, although 
the latter one is superior to applying box-counting to 
calculate the capacity dimension. 

The systematic errors of the Grassberger-Procaccia 
algorithm are recently considered numerically in [ 121. It is 
possible to do a similar analysis for the box-counting 
algorithm. 

The box-counting algorithm has been applied to calculate 
the correlation dimension of EEG signals, and a reasonably 
good result was obtained in short computer times [13]. 
In the following we present the results of treating pulsar 
intensity data. 

The intensity data of pulsar 0950 + 08 were obtained in 
April 1976 at the Arecibo Observatory, which are divided 
into three sets with 2000, 4800, and 4000 pulses, respec- 
tively. These data were analyzed and discussed in [14], 

TABLE II 

CPU Time (seconds) for Box-Counting and the Grassberger- 
Procaccia Algorithm Using a VAX-7800 

Number of iterations 500 loo0 2ooo 4ooo 

Box-counting 6 13 43 132 

Grassberger-Procaccia 25 73 191 822 
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FIG. 6. Generalized dimensions of pulsar 0950 + 08 calculated with box-counting by using 10,800 entries: (a) capacity, (b) information dimension; 
(c) correlation dimension. 
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however, not from the viewpoint of a dimensional analysis. 
The three data sets exhibit similar behaviour, but the second 
set seems to have less noise. 

With the box-counting algorithm we calculated 
generalized dimensions of the pulsar. By doing so, the pulse 
intensity data were first transformed to integers to simplify 
the programming. The maximum pulse intensity is less than 
2i5, i.e., a box with side length 215 will include all points. 
From Fig. 4 we estimate capacity D z 4.0, information 
dimension (r z 6.0 and correlation dimension v E 4.5 with an 
embedding dimension z 14. As we mentioned before, the 
capacity calculated with box-counting will be smaller than 
it should be, but we can trust the information dimension 
and especially the correlation dimension more or less. The 
correlation integral obtained by using the Grassberger- 
Procaccia algorithm are shown in Fig. 5; the nearly straight 
part of the curves are not very well parallel, but we can 
estimate a correlation dimension ~4.5 and an embedding 
dimension z 14 from this picture. 

We also calculated generalized dimensions of the com- 
bination of all data sets (10,800 entries), and the results are 
shown in Fig. 6. One does not find a remarkable difference 
between corresponding pictures in Fig. 4 and Fig. 6. This 
means a data set with some 4000 entries is enough for the 
box-counting algorithm in this case. 

For a complex system such as a pulsar, the best thing 
one can expect might be to find an approximate low- 
dimensional strange attractor and to estimate its fractal 
dimension and the minimum embedding dimension with a 
reasonable accuracy. Since two algorithms give similar 
results of the dimension values, we expect they have a 
certain meaning, and this deserves further investigation. 

In conclusion we point out, that it is strongly recom- 
mended to calculate the correlation dimension of an experi- 
mental data set with the box-counting algorithm, since it 
requires very little computer time and gives enough good 
results for the practical purpose. 
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